Description

給定一個數字序列$S$,我們定義一個無限反覆數字序列$S^{\infty}$為無限個$S$接合在一起 (假設 $S$ 為 "1,7,2",則$ S^{\infty} $為"1,7,2,1,7,2,1,7,2....."),接著我們定義當一個數字序列$X$為一個無限反覆數字序列的其中一個連續子序列時,我們稱$X$為該無限反覆數字序列的連續反覆數字序列。(好繞口.w.)

問題很簡單,今天小龍得到了一個由$S$組成的無限反覆數字序列$S^{\infty}$,還有另一個數字序列$X$,今天小龍想要在最小的花費下將$X$變為無限反覆數字序列$S^{\infty}$的一個連續子序列,那請問最小的花費是多少呢?

一個數字替換的花費定義為$|X_i - N|(X_i為原本的數字,N為想替換的數字)$。

Input Format

第一行輸入一個整數$n (1 \leq n \leq 500)$,代表$S$的長度。

第二行輸入$n$個數字$S_i (1 \leq S_i \leq 50000)$ 代表$S$每項的值。

第三行輸入一個整數$m (1 \leq m \leq 10000)$ 代表$X$的長度。

第三行輸入$m$整數字$X_i (1 \leq X_i \leq 50000)$ 代表$X$每項的值。

Output Format

請輸出一個數字代表最小的花費值。

Sample Input 1

3
1 3 5
3
2 3 6

Sample Output 1

2

Sample Input 2

2
6 7
4
1 3 5 19

Sample Output 2

22

Hints

Subtasks

No. Testdata Range Score
1 0~4 100

TopCoder

餘切
$\Huge\text{freeh1}$

User's AC Ratio

83.3% (25/30)

Tags

Problem Source

題目改自 建電 41st 上學期社內賽 pF 彩帶寶石

Testdata and Limits

No. Time Limit (ms) Memory Limit (VSS, KiB) Memory Limit (RSS, KiB) Output Limit (KiB) Subtasks
0 1000 250000 250000 65536 1
1 1000 250000 250000 65536 1
2 1000 250000 250000 65536 1
3 1000 250000 250000 65536 1
4 1000 250000 250000 65536 1